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On the zeros of 6-j coefficients 

Jacques Raynal 
Service de Physique TUoriquet, CESaclay. F-91190 Cif-sur-Yvette CEDEX. France 

Received 13 December 1993. in final form 14 March 1994 

Abstract. An extensive computer Search for non-trivial zeros of the 6-j coefficients of SU(2) 
has been performed U, find their frequency as a function of the sum of their quantum numbers 
and of their polynomial degree. For the zeros of degree 2, four of the seven cases already known 
(taking into account Regge symmetries) of two relations between quantum numbers relevant to 
a Pel1 equation have been generalized to ded with only one relation; a new case of two relatims 
and many new cases of three relations. all with polynomial solutions. have been found; but 
all these formulae only account for one zero out of seven. For degree 3, we found four new 
cases of two relations and some olher cases of lhree relations with polynomial solutions; wifh 
the already known case of a Pel1 equation, they account for almost half of the zeros. The fast 
decrease of the number of m s  with the degree and the relative  smallness of their quantum 
number is an indication that there should be no zeros of degree larger than 9. 

1. Introduction 

In a previous work (Raynal et al 1993) we studied the zeros of the 3-j coefficients of 
SU(2)  with a particular emphasis on their repartition. In the past, such studies have usually 
been associated with a study of the 6-j coefficients of SU(2) ,  due to the similarity of these 
two problems. But our findings for 3-j coefficients have no equivalent for 6-j coefficients; 
however, the study of their repartition has a similar interest. Let us summarize previous 
work on the zeros of 6-j coefficients. 

For the 6-j coefficients of SU(2) there exists a class of zeros which have been called 
‘non-trivial’ or ‘smctural’ zeros as opposed to the ‘trivial’ zeros resulting from a violation 
of one or more triangle conditions. These non-trivial zeros have been the subject of 
many studies some years ago, sometimes in relation with other groups (Koozekanani and 
Biedenharn 1974, Biedenharn and Louck 1981, Van der Jeugt et al 1983, De Meyer et 
al 1984, Vanden Berghe et a1 1984, Van der Jeugt 1992, Vanden Berghe 1994). Bowick 
(1976) shortened the tables of zeros published by Koozekanani and Biedenharn (1974) for 
6-j coefficients, taking into account the symmetries discovered by Regge (1959). These 
symmetries will be fully taken into account in the present work. 

The non-trivial zeros of 6-j coefficients, like those of the 3-j coefficients, have been 
classified by the minimum length of the single sum expression for the coefficients. This 
is also the minimum length of the expression of the coefficients in terms of a generalized 
hypergeometric series (Lindner 1985, Srinivasa Rao 1985, Srinivasa Rao and Rajeswari 
1985). The number of terms in this sum minus one will be called the degree of the 
coefficient (in some papers it is called the weight). Thus zeros of degree n (n t 0) are 
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by definition non-trivial zeros. The zeros of degree 1 of the 6-j coefficients have been 
studied by Brudno (1985), Brudno and Louck (1985a,b), Bremmer and Brudno (1986), 
Srinivasa Rao and Rajeswari (1987), and Srinivasa Rao et al (1988). but no general 
expression without some constraint between its parameters has been found. Using the 
Pell equation, Beyer et a[ (1986) showed that there are infinite series of zeros of degree 2 
for 6-j coefficients. Algorithms were obtained by Srinivasa Rao and Chiu (1989). For the 
zeros of 6-j coefficients of degree 3, Brudno (1987) found a special case for which a Pell 
equation can be used. 

The original motivation for the present paper was an investigation of the distribution 
of the zeros with respect to their degree n and the sum of the angular momentum quantum 
numbers involved (this sum is invariant for Regge symmetries). The method of computation 
is similar to the one used by Raynal er a1 (1993) for the zeros of 3-j coefficients. A first 
search for the zeros of 6-j coefficienti up to a sum of angular momenta equal to 240 gave 
only two zeros of degree 6, and one of degree 7, 8 and 9. So, it appears that zeros are 
quite scarce for high degree and an extended search was performed up to a sum of quantum 
numbers equal to 600. Finally, the search was extended to a sum equal to 1200, but only 
for the zeros of degree 2 to 8. All the results are used to find which relations between 
quantum numbers allow the paramemzation of families of zeros. 

In section 2, notations for 6-j coefficients are summarized with emphasis on Regge 
symmetry. Some indications of the, .computation are given. Section 3 is devoted to the 
zeros of degree 2. The generalization of four of the cases relevant to a Pel1 equation found 
by Beyer et a1 (1986), a new case with two relations between quantum numbers and many 
cases with three relations, only involve about one out of seven zeros. In section 4, the 
zeros of degree 3 are found to be easier to handle than the zeros of degree 2. Beside the 
Pell equation already found by Brudno (1987), there are four cases with two linear relations 
between parameters in which one can give solutions quadratic in some variable and even 
extract linear solutions. Including cases with three linear conditions, we obtain almost one 
zero out of two. Results for the zeros of higher degree are discussed in section 5. Some 
finite families can be found for degrees 4 and 5, but more easily for degree 5. All the zeros 
found for degrees 5 and more are given in tables. 

2. Expression of the 6 - j  coefficients 

The 6-j coefficients of S U ( 2 )  are conveniently expressed as a generalized hypergeometric 
series: 

- c + d f e  b + d - f  a + e - f  a + b - c  

- a + e + f  - a f b + c  c - d + e  b - d + f  
- b + d + f  c i d - e  a - b + c  a - e + f  

1; ; \=CaF3[a-e-  f , a - b - c . - c + d - e , - b + d -  f ;  

. (2)  
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could be used (Raynal 1979). Whipple (1936) studied these series in conjunction with well 
poised 7 F6 generalized hypergeometric series, introducing six parameters which are 
x,, = -L 2 (  a + d + l )  X I = - -  ; ( b + e + l )  x z = - i ( c + f + l )  

I (3) 
x4 = -1 z ( b  - e )  xg = -?(c- f )  XJ = -s(a 1 - d )  

and obtained symmetries corresponding to permutations of these six parameters with a 
change of sign for an even number of them. For SU(2),  the usual symmetries correspond 
to a permutation of the pairs ( X O ,  x3) .  (XI, x4)  and ( X I ,  xg) and an even number of changes 
of sign among ( x g ,  xq. x5). and the Regge symmetries to a permutation of ( X O ,  x I ,  x2)  
independent of the permutation of (x3,  x4. xg). So. to take into account these symmetries 
without introducing unusual fractional numbers and many negative signs, it is convenient 
to define a 6-j coefficient by the parameters 

X , = a + d  X b = b + e  X , = C + f  
(4) 

with X,, 2 X b  > X ,  2 Yo > Yb > IY,l > 0, where only Y, can be negative. The X and 
the Y are integer or half-integer. All the 288 equivalent 6-j coefficients are obtained by 
the product of the permutation of X ,  the permutation of Y and an even number of changes 
of sign for Y ,  but the definition (4) is unique. So, X and Y are a convenient intermediate 
step to obtaining all the equivalent 6-j coefficients. That any X should be greater than any 
IY 1 is easily seen because X ,  c Y. implies a - c > d + f ,  which excludes any value of 
b .  All values of X and Y are not allowed, due to triangular inequalities, which require 

Using the notation 

Y . = a - d  Y b = b - e  Y , = c -  f 

- x d  f xb f x ,  - - Yb - Yc 2 0. 

(x)Lt = x ( x  - 1) .  . . ( x  - i + 1) ( x ) !  = x ( x  + 1). . . ( x  + i - 1) (5) 
we can write the 6-j coefficient, 

where 

O c n < x < y < z  O < u < u  t = n + x + y + z + u + u - 1 .  (7) 
The relations between these parameters and the X and Y are 
2X" = t + U  + U  -3  
2Y.q = -n - x  + y + Z 

2xb = f - U  + U - 1 
2Yb = - f l  + x  - y  f 2 

2Xc = t f U -2J-l 
2Yc = -Et x + y - z  (8) 

and with the quantum numbers 
2 a = y + z + u + u - 2  2 b = x + z + u - l  2 c p x + y + u - l  
2 d = n + x + u + v - 2  2 e = n + y + v - l  2 f  = n + z + u - 1 .  

In the presentation of the results, we often consider the parameters ( x ,  y, z) as equivalent 
(without inequality relations) and the same holds for (U, U). Also, we permute (b ,  c) with 
(e ,  f )  in writing the coefficients when the result is more symmetric. 

In his work, Bowick (1976) used notations introduced by Jahn and Howell (1959) based 
on the reversed series 

&[I - n + I, -n, 1 -n - U ,  1 - n  - U ;  1 - n + x ,  1 - n + y. 1 - n + z ;  11 

(9) 
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where J ,  = 1 - n + f .  which tums out to be a + b + c + 2, is chosen to classify the 
coefficients, with the assumption that it is larger than the three other similar expressions. 
There are no zeros if .I, is a prime number. In this work, we prefer to classify the 6- j  
coefficients with respect to their degree n and 

N = 2(a 3-b + c + d + e +  f) = 2 ( X ,  + Xb + X , )  = 3t + U  + U - 5 (10) 
(twice the sum because the sum itself can be integer or half-integer). 

To obtain the zeros for a fixed value of n and of N :  

First, we choose t and the sum SI = U + U which must be at least 2 and less than 
$ N  - 3 n + 3  because 2 = n + x + y + z  +SI - 1 and x , y , z  >n .  
After, we choose the sum sz = x + y and z with sz + z = f - SI - n + 1 and 22 > $2. 

Then, we choose x and y such that x + y = and x < y < z. At this stage, for 
n = I .  we can check if x y z  can be divided by t to avoid more computations. Similar 
verifications can be performed for larger values of n, but they become inefficient for 
too large values. 

e The last step is the choice of U and U with SI = U + U and U < U. 
For large values of n, the evaluation of the generalized hypergeometric series for every 

value of U and U tums out to be very long. Instead we calculated these series only for 
U = U,, U = U, (where U, is the maximum value of U and U, = U, or U, = U, + 1) 
and for U = U, - I ,  U = U, + 1 to use a recurrence relation for fixed values of the other 
parameters. This recurrence turned out to be very stable, going towards small values of U, 
but not in the other direction. Detection of zeros is done by comparison of the value given 
by the recurrence to the one obtained by changing the sign between the two terms involved. 

We have performed a complete search of the zeros of all degrees n up to N = 1200. 
Afterwards, we continued the search up to N = 2400 for the degrees n = 2 to n = 8 
which seemed of special interest. We will give between parenthesis the number of zeros 
for N 6 600, for 600 < N < 1200 and 1200 < N < 2400. The number of zeros is given 
with more details in table 1 as a function of n and N .  

For N < 1200, there are 105 477 zeros of degree 1 with a maximum number of 321 
for N = 1126 and 300 for N = 1184. 

3. Zeros of degree 2 

There are 16252 zeros of degree 2 for N < 2400 (1254,3713,11285) with a maximum 
number of 23 for N = 1555. For this degree, the condition is 
x y z ( x  - l ) ( y  - l)(z - 1) + fuu(r - I)(u + l ) (u  + 1) = Zxyz(r - l)(u + l)(u + 1) (11) 
with f = x + y + z + U  + U + 1. It is of second degree in the parameters, but if one of the 
parameters ( x ,  y ,  z )  or (f. U, U) is eliminated the condition is of fourth degree in the two 
other parameters. 

There are many pairs of zeros with four identical parameters. If the sets (r, U, U) or the 
sets ( x .  y ,  e )  are identical, the relation between the other parameters of these zeros is 

8xyz  
U'+ U'= U + U  (U' -U')* = (U +u)2+4(u + l)(u+ I) - -~, 

f 
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Table 1. 
2(0 + b+ c + d + e + f). 

The number of zeros of degree n for 6- j  coefficients a5 a function of N = 

N n=l n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 

1-120 146 16 2 0 0 0  0 0 0 
121-240 985 127 30 ~ I 1  4 0 0 0 - 0  
241-360 2555 240 66 17 7 I 0 0 0  
361480 4660 385 81 12 2 I I I 1 
481-600 7295 486 82 13 7 0 1 I 0 
601-720 10352 593 104 9 I 1  2 2 0 0  
721-840 13894 ~ 651 91 23 ' 4 I 0 0 0 
841-960 17640 817 118 21 4 0 0 0 0  
961-1080 21600 783 97 9 4 1 0 0  0 
1081-1200 26350 869 147 16 6 0 0 I 0 
1201-1320 936 119 I 1  1 0 0  0 
1321-1440 
1441-1560 
1561-1680 
1681-1800 
1801-1920 
1921-2040 
204-2160 
2161-2280 
2281-2400 

969 
1110 
1019 
1164 
1052 
1152 
1349 
I229 
1305 

101 14 1 0 I 0 
96 8 I 0 0 0  

110 6 2  I 0 0  
123 LO' 0 0 I 0 
113 10 2 0 0 0 

119 7 I 0 0 0  
116 8 0 0 0 0 
124 5 I 0 0 0  

I00 7 0 0 0 0 

For a pair of zeros, one with the parameters ( x ,  y .  z )  and ( t ,  U, U), the other with the 
parameters (x', y ,  z )  and ( t .  U', U), the relation is 

x ' = l - x -  2 ( y + z  f u - t + l ~ ~ t - I ~ ( v + l ~ ~ y z + r u )  
Y Z ( Y  - I)(Z - I) + zyz( t  - i j ( u  + I) + rV7i: i)(u + I) 

with the condition that x' and U' should be integers greater than or equal to 2 and 1, 
respectively. If the parameters of the second zero are (x ' .  y ,  z )  and (t', U, U), the relation is 

x ' = l - x +  

t' = 1 - I  + 
with the condition that x' and t' should be integers greater than or equal to 2 and 9, 
respectively. There are six different possibilities for (13) which conserve the value o f t  
and three possibilities for (14) which do not conserve f and can generate large quantum 
numbers. Recurrently applying these relations to the 16 252 zeros found for N < 2400, 
4035 of them generate no other zero, 2145 generate only one zero and 1005 only two zeros; 
one finds 1308 sets of 4 4 0  zeros including 3902 zeros beyond N = 2400. The first two 
zeros generate no others and the third zero belongs to a set of 26 zeros. The relations (13) 
and (14) were very useful in finding the families (49) and (50). 

3.1. One relation between quantum numbers 

There are eleven conditions like x y  = tu or x y  = uu for which two degrees factorize in the 
condition (11). The coefficient of z2 is of the second degree for a condition like ny = ru 

2 ( Y + Z  + U + U + I X U  + ])(U + I)(yz.- UU) 

y z ( y  - 1x2 - 1) - 2yz(u + N u  + 1) + uu(u + I ) ( u  + 1) 
2(y + 1. + U  + U + I ) y z [ ( y  - l)(z - 1) - (U + l)(u + 1)l 
y z ( y  - 1)(z - 1) - 2yz(u + l ) ( u  + 1) +uu(u + l ) ( u  + 1) 

(14) 
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but only linear for a condition like xy = uu. Furthermore, this linear coefficient can also 
be factorized in the following four cases. 

Case I :  xy = uu. There are 226 such zeros for N < 2400 (34,47, 145). The condition 
(1 1) can be written as 

uu(x + y + U  + u)[(u + l)(u + I ) (x  + y + U + U + 1) - z ( z  - 111 = 0.  (15) 
With x = gik, y = g j l ,  U = g j k ,  U = gil  (where g is a common factor and where i and j 
have no common divisors, as do k and 1).  it is a Pell equation fork and z with fixed values 
of i, j and 1 ,  
[ ( g i l +  l)((i + j j ( 2 g j k  + g j l +  1) + j)12 - j ( i  + j ) ( g i l +  I)[ZZ - 11’ 

= ( g i l +  l)(gjl- 1 ) { ( i  + j ) (gi l+ I ) ( g i j l +  gj21 - i + j )  + ij). (16) 
Three other Pell equations are obtained by exchanging k with 1 and i with j ,  k with i 
and I with j or by the product of these two operations. Exchange of (i. j )  with (k .  1 )  is 
only a permutation of (x, y) or (U. U). Each zero belongs to twelve finite families, six with 
fixed values of i and j and six with fixed values of k and 1. Due to the simplicity of their 
derivation and their similarity, we postpone their demonstration to the case of the zeros of 
degree 3 with x = U + 2 and y = U + 2 for which two of them have been given by Brudno 
(1987). Many of these families reduce to only one zero. For nine of the zeros found, they 
generate no others but one of these families involves 29 zeros. 

There are 54 zeros (14,13,27) with i = j = 1. They have two linear conditions 
between quantum numbers: x = U and y = U. In this case the 6 - j  coefficient can be written 
as 

1 x = a - - !  y = b - i  
u = a - -  1 u = b - L  t = a + b + 2 c + l  

z = -a - b + 2c + 2 
(17) 2 r+b-2 c + f  a c b l  c 2 

and taking into account that 2b is odd, the Pell equation (16) can be rewritten as 

( 1 8 )  
This is case 5 and Pell equation I11 for Beyer et a1 (1986). If a # b, each zero belongs 
to two different sequences of solutions of a Pell equation. If a = b, the zero belongs to a 
polynomial family (all the parameters are expressed as a polynomial of r) which is 

(19) 
starting from r = 1 (up to r = 5 for N 4 2400) and to a sequence of solutions of a Pell 
equation. 

Case 2: (x  - l ) (y  - 1) = (U + l ) (u + 1). There are 318 such zeros (58,93, 167). The 
condition (1 1) can be written as 

[SC - 4a - 4b + 61‘ - (26 + 1)[4a + 261’ = -(2b)’(2b - 3). 

2 x = y = U = U = r  + 3 r +  1 z = (2 r+5 ) ( r  + 1)’ 

(U + I ) (u  + l)(X + y  + U  + U 4  1) 
(20) 

With x = g i k  + 1, y = gjl 4- 1, U = g j k  - 1, U = gil  - 1, it is a Pell equation fork and z 

i e j  z + z + g ( i + j ) ( k + Z ) + l .  (21)  

x z = U l + l  y2=u1+1 z 2 = 2 Z , - c 1  

u z = y i - 1  u t=x1-1  z 2 = z i .  

x[uu(x + y + u +  U +  1) - z ( z  +2r +2y+2u + 2 u +  1)1= 0.  

with fixed values of i ,  j and 1 which differs from the Pell equation (16) of case 1 by 

Therefore, for any zero of m e  1 with x i ,  . . . there is a zero of case 2 with x2. . . . such that 

(22) 
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For the two first zeros of case 1, z2 = 1 and the corresponding zeros are of degree 1. The 
finite families of the two cases are equivalent only if i = j = 1. For 14 zeros, the finite 
families generate no others but one of these families involves 156 zeros. 

There are 70 zeros (19, 19.32) with i = j = 1. They have two linear conditions 
between quantum numbers: x = U + 2 and y = U + 2. In this case the 6-j coefficient can 
be written as 

(23) 
z = -a - b + 2c+2  x = a + ~  I y = b + i  

u = a - 2  v ~ b - 2  t = a + b + Z c + l .  {a :“2  : :I 2 

I 
This is case 6 and Pel1 equation III of Beyer et al (1986) with [Sc + 4a + 4b + 21 instead 
of [Sc - 4a - 4b + 61 in equation (IS). There is a polynomial family corresponding to the 
family (19). The correspondence between case 1 and case 2 is 

a , )  = o  a + b - 2  b Q + b - 2  

C +  4 c ~ c l ( , ) = 0 4  C - a - b  c - a - b + ;  c - a - b + ?  (z) 

(24) 

Case 3: xy = u(u  + 1). There are 494 such zeros (84,129,281). The condition (11) can 
be written as 
u ( u + l ) ( x + y + u + u + l ) [ ( u + l ) u ( x + y + u + u ) - z ( Z + 2 U + 1 ) 1  = o .  (25) 
With x = g i k ,  y = ~ g j l ,  U = gjk, U = g i l  - 1, it is a Pell equation for k and z with fixed 
values of i, j and I or a different Pell equation for 1 and z with fixed values of i, j and k: 

[ ( g ( i  + j ) l  - 1)(2gijk + gij l+ i - j)]’ - ij(gil + gjl - 1)[2z + 2gjk + 112 

[(gjk + I)((i + j ) ( Z g i l +  gik - 1) - Ill2 - i(i + j)(gjk + 1)[2z + Zgjk + 112 

= (giL - I)(gjl - ~)((i + j ) [ ( g j l -  I)(gi21 + gijf - 3i - j) - ~ i ]  + ij) 
(26) 

= ( g i k  - l)(gjk + l){(i + j)(gjk + I)(gi’k + gijk + i - j )  + i j}.  
Two other Pel1 equations are obtained by exchanging k with i and I with j .  Each zero 
belongs to twelve finite families, many of them with only one zero. For 38 of the zeros 
found, they generate no others but one of these families involves 99 zeros. 

There are 116 zeros (25,24,67) with i = j = 1. They have two linear conditions 
between quantum numbers: x =,U and y = U + 1. In this case the 6-j coefficient can be 
written as 

[a+:-2 c c - 7  b l l  u = a - -  1 u = b - 1  t = a + b f Z c + f .  

The Pell equations (26) are, respectively, for a and c, and for b and c, taking into account 
that 2a is odd: 

x = a - -  ‘ y = b  z = -a - b + 2 c + i  

(27) 

[4c - 2a + 31’ - (2b - 1)[2a + b - 11’ = -(b - 1)’(2b - 5) 

[SC - 4a + 61’ - (2a + 1)[2a + 4b - 41’ = -(2a)’(Za - 3) 
(28) 

(respectively, case 3, Pell equation I and case 4, Pel1 equation I11 for Beyer et al 1986). 
Each zero belongs to a sequence of two different Pell equations. 

Among the zeros with i = j = 1, there are pairs of zeros with the same value of 
N and f ,  two of them with f = 22 + 1 and six with t = f z  + 1. More generally, with 
r(t - 1) = (r + l )z ,  the condition reduces to 

[x - 2rZ + 1][y - 2r’ - 2r - 11 = r(r  + 1)(2r - 1)(2r i- 1) (29) 
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which defines for any value of r a finite family of pairs of zeros with the same vatue of t ,  
L and a difference 2r + 2 for the other parameters. For N < 2400, there are five pairs out 
of the 12 pairs of zeros related to r = 3. At least eight polynomial families of pairs can be 
extracted from these zeros. They are 

x = 2r2 - I + p f r )  

p ( r ) q ( r )  = r(r + 1)(2r - 
y = 2r2 + 2r + 1 + q(r) (30) 

+ 1 )  
where p(r) and q(r )  are any polynomial of r including unity. There are only two such 
pairs with i # j for N < 2400. 

Case 4: (x - I)y = (U + l)(u + 1). There are 599 such zeros (105,154,340). The 
condition (11) can be written as 
(U+ l ) ( u + l ) ( . r + y + u + u + l ) [ u u ( x + y + u + u ) - z ( z + 2 y + 2 u + 2 u + 1 ) 1  = o .  

(31) 
With x = gik + I .  y = g j l ,  U = g j k  - 1, U = gil - 1 there are two Pell equations which 
differ from the Pel1 equations (26) of'case 3 by 

z + z +g( ik  - j k +  i l +  j l )  - 2 .  (32) 
Therefore, for any zero of case 3 with x3, . . . there is a zero of case 4 with x4, . . . such that 

(33) u4=x3-1  
However, five pairs of zeros of case 3 give the same zero of case 4. The finite families of 
the two cases are equivalent only if i = j = 1. For 40 zeros, the finite familks generate 
no others but one of these families involves 354 zeros. 

There are 130 zeros (31,29,70) with i = j = 1. They have two linear conditions 
between quantum numbers: x = U + 2 and y = U + 1. In this case the 6-j coefficient can 
be written as 

i + j 

x4 = U 3  + 1 y4 = U3 + 1 24=23-X3-YY3fU3-U3+1 
u6, = y3 - 1 tz = 13 - x 3  - y3+u3 - U 3  + 1.  

x = a + l  y = b  z = -a - b + 2c + 2 
3 t = a  + b + 2c + 2 .  la+:-2 a c C + Z  b 4  u = a - -  u = b - l  

(34) 
This is case 1 ,  Pell equation I and case 7, Pel1 equation ID for Beyer er a1 1986) with 
[4c+2b+1] instead of [4c -k+3]  and [8cf4b+2] instead of [8c-4~+6] ,  respectively, 
in equations (27). There are pairs similar to those defined in (29) and (30). Here, finite 
families can be defined with 

(35) 
instead of (29). but there is no relation from pair to pair between cases 3 and 4. There are 
also only two such pairs with i # j for N < 2400. The correspondence between cases 3 
and 4 is 

[ x  - 2r2 - 2r - ~ ] [ y  - 2(r + I)'] = r(r  + 1)(2r + 1)(2r + 3) 

= 0. (36) 
a + b - 2  a ' 1  = o +  ( c - b + $  c - b + i  

- z (3) 

There are 1623 zeros belonging to one of these four cases for N < 2400 because some 
of them belong to more than one case. It is almost 10% of the total number. Among them, 
370 with i = j = 1 belong to six of the cases studied by Beyer et a1 (1986). Almost as 
many (334, that is 54, 70, 116 and 130 for cases 1 to 4) with i = 1, j = 2 need only a 
minor modification of the Pel1 equations of these authors. 
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3.2. Two relations benoeen quantum numbers 

All the cases of the Pel1 equation found by Beyer et a1 (1986) request two relations between 
the quantum numbers. Three of them cannot be generalized to deal with only one relation. 
Searching for polynomial families, we found a fourth case with a quadratic condition. 

3113 

Case a: x = U + 1,  y = U + 1. There are 39 such zeros (15,  11 ,  13). The generalization 
to the unique condition x y  = (U + l ) (u  + 1 )  gives only four other zeros for N < 2400. It 
is the most symmetric case because 

x = a  y = b  
a c c  1 u = a - 1  u = b - l  t = a  + b +2c + 1 .  

z = -a - b + 2c+ 2 
(37) 

The condition for a zero is 

2(u + I ) ( u  + l)(u + U + l)[uu(2u +2u + 3)  - 2(u + U + 1)z - z'] = 0 (38) 

(39) 

(case 2 and Pell equation II from Beyer et a1 1986). There is a second Pel1 equation obtained 
by the exchange of a and b. So, each zero belongs to two different sequences of solutions 
of a Pell equation. Each zero also belongs to six different finite families. 

and can be written as the Pell equation 

[4c + 21' - (2b - 1)[2a + b - 11' = -(b - 1)(2b2 + b + 1 )  

Case b: x = ~ u  - 1, y = U. 
the lower row are all different: 

1 c + ;  c c - 5  " i )  u = a  . v = b - l  r = a + b + 2 c + ; .  

There are 33 such zeros ( 8 ,  12,13). The quantum numbers of 

a l - b - 2  a x E a - 1  y 7 b - i  z = - a - b + Z c + ;  

(40) 

The condition for a zero is 

2 u ( u + u ) [ u ( u + I ) ( u + 1 ) ( 2 u + 2 ~ - 1 ) + ( 2 ~ ~ + 3 ~ + 2 ~ ) ~ - ( ~ - 2 ) ~ ~ ]  = O .  (41) 

This condition can be written as the Pell equation 

[(a - 2)(4c - 2a - 4b + 1 )  - 3(2b + l)]' - (a2 - 1)(2a -- l )[a + 2b - I]' 
= - a(a - 2)'(2a2 - a  - 2) (42) 

(case 8 and Pel1 equation N for Beyer et a1 1986). Each zero onIy belongs to a sequence 
of Pell equations. No finite family can be defined. 

Case c; x = U + 3, y = U + 2. 
to case b: 

There are 38 such zeros (15,7,16). This case is similar 

x = a + l  y = b + i  z = -a - b+2c+ 5 5 

c - ; ~  c C + ?  u = a - 2  u = b - ?  t = a + b + 2 c + ; .  

(43) 
b d  a + b - 2  a I 

The condition for a zero is 

2(v + l ) (u  + U +3)[u(u + l)u(2u + 27.1 +5)  - ( 4 2  + 6uu + 15u + 6u + 12)z - uz2]  

= O .  (44) 
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This condition can be written as the Pell equation 

[(a - 2)(4c + 2a + 4 b  + 3)  + 3(2b + l)]’ - (aZ - 1)(k - l ) [a  + 2b - 11’ 
= -a(a - Z ) ~ ( ~ Q ’  - a - 2)  (45) 

(case 9 and Pel1 equation IV for Beyer eta1 1986). Each zero only belongs to a sequence 
of two different Pell equations. No finite family can be defined. Due to the use of Pel1 
equation IV, there is a correspondence: 

provided that 
2a - 1 

c‘ = c - (a + 2b - 1)- 
2 Q - 4  (47) 

is integer or half-integer, that is for 20 zeros in the 33 found for N 6 2400 in case b and 
for 25 zeros in the 38 found in the same range for case c. 

Case d: y - x = U -U, x = 2(u -U)’ - U  - 1. Searching for families with a polynomial 
behaviour of all the parameters and hying the relations (13) and (14) on them, one can find 
families with quadratic behaviour relatkd by (13) using x and U and by (14) using z and I. 
These zeros have y - x = U - U and y + U + 1 = 2 ( y  - x ) ~ .  that is two relations as in 
cases a to c. There are 21 1 such zeros for N < 2400 (47,57, 107). Expressing U and U 
with w = y - x. the condition (1 1) becomes 

2 ( 2 w z - 1 ) ( 4 w z -  1 ) [ ( w 2 - x ) ( ~ + 4 ~ z - l ) + ~ z - w z ]  

x [(U’ - y ) ( z  +4wz  - 1) + y2 - w’] = 0. (48) 

This family of zeros can be separated into a sub-families fulfilling the first condition with 
105 zeros and a sub-family fulfilling the second condition with 106 zeros. The relation (13) 
with exchange of x with y and U and U increases or decreases the four parameters x ,  y .  U 
and U by the same amount w (it fails for one zero of the second set, due to a value out of 
range). The relation (14) shifts from one condition to the other but fails for 69 of the first 
set (five due to values out of range and 64 due to non-integer values) and 51 zeros of the 
second set (due to non integer values). 

The first condition can give zeros only if x > wz. With two positive integers i and j 
without a common divisor such that j ( x  - w2) = iw, w must be divisible by j, that is 
w = j r .  The solution of the first condition is 

(49) x = r ( j ’ r + i )  y = r ( j  ‘ r + i + j )  = : ( j 2 r  1 .  - i ) ( j 2 r 2  - i r  - 1). 
c 

As y = x + w, the solution of the second condition is, with k = i + j ,  

(50) x = r ( j ’ r  + k  - j )  

All the parameters are expressed by a polynomial in r ,  which is at most cubic. Many families 
with a quadratic behaviour of the parameter can be extracted with a third condition. All 
the values of r are not allowed. Using I fori  of (49) and fork of (50). the allowed values 
of r are y + nl for any value of n and 0 6 n, < I are such that n,(jn, - I)(jn, + I) is a 
multiple of I .  The number of values of nr is 3m, where m is the number of prime factors 

1 
k ’r + k )  y = r ( j  z = - ( j 2 r  - k) ( jZr2  - kr  - 1 ) .  
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of 1 larger than 2 multiplied by 5 if 1 is divisible by 8, 3 if 1 is divisible only by 4 and 2 if 
I is divisible only by 2. 

These cases include 317 zeros because four of them belong to more than one case. 
Among them, 1 1  zeros also belong to the case for which only~one condition was necessary. 

3.3. Three relations between quantum numbers 

Using a polynomial expansion of the parameters in the condition (1 l ) ,  we obtain that families 
of zeros for degree 2 are at least quadratic. Linear families will be found only for degree 3. 
The simplest case is when one of the parameters (U.  U) or (x, y. z )  is constant. Writing the 
other parameters as x = xo + xIr + x2r2, the higher degrees of r in condition (1 1) imply 
that a parameter of the other set should be constant or that two parameters of the other set 
should be linear in r.  No family with a constant parameter among ( x ,  y, zf and a constant 
parameter among (U, v )  have been found. 

There are quadratic families with a constant value of U .  With U = 3, y = x + 2, 
U = z - x + 2, the condition for a zero is 

(51) 

Each term gives a family of 16 zeros for N < 2400 with z quadratic in x, but the first 
one verifies the condition (3 I) and belongs to case 4. The relations (13) and (14) used on 
the second family give two similar quadratic families having eight zeros for N < 2400, 
verifying, respectively, the conditions (20) and (25). Details are given in table 2 in which 
these families are described using numbers 1 and 2 and the families obtained with relations 
(13) or (14) are 2n and 2b. Other quadratic families can be found with U = 3 and with 
U = 8. In this table, the quadratic families are separated into five groups: 1 to 6 with fixed 
value of U ,  7 to 1 1  with fixed value of x, 12 to 19 with z - y = U - U, 20 to 30 with 
z - y = U - U  & 1 and 31 to 40 miscellaneous. A last group gives cubic families. Already, 
three families of pairs discussed in equations (29)-(30) and (35) are cubic: there are those 
for which p(r) and q(r)  are quadratic in (30). A family with cubic behaviour of some 
parameters has also be found, using relation (14) for the quadratic family 10. 

A Pel1 equation has been found for the 6-j  coefficients with c and c i f in the lower 
row given by (40) and (43). But for the third disposition of these quantum numbers in the 
lower row: 

x = a - - l  2 y = b + i  z = - a - b + 2 c + 2  

(52) 

(z + 3)(z +4)(4z - x 2  - 5 x  + 14)(12z -x2 - Sx +24) = 0 .  

c + ;  c - i  2 u = a - i  v = b - %  t = a + b + 2 c + l  

the condition (1 1)  is 

2x(y - I)[@ + l)(y - 2)(x + y - l ) ( k  + 2y - 1) 
-(4x2 + 4xy + x + 3y - 3)Z - ( X  + y + l )Zz]  = 0 

and there is no Pel1 eouation. With x = U. v = U + 2 there are 

(53) 

.~ zeros (8 ,4,3)  for 
N < 2400. Among them, there are five pairs with the same N. z and f and with x' = x + 1, 
y' = y - 1. The condition giives a family of pairs: 

2 x = r + 2r - 1 y = ( r  + 2)' z = (2r + l)(r2 + 3r + I)  (54) 

with r starting from 1 .  The other five zeros with U = x and v = y - 2 are for N 4 2400 at 
N = 91,271,277,304 and 1561. For N 4 120000 there are 21 other pairs and only three 
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Table 2. Polynomid families with rhrcc condirions berwedn quantum numbers. An identification 
8 is given to each family. Thd number of zeros for N < 2400 is Y m d  the number of the orhur 
z r o s  with the same conduions is il. The 13.~1 pn of rhe table @ver CLbic iamllies. Tn: h b e  

lint pans give quadratic families for liked U .  fixed x .  L - ) = U - U .  L - y = U - ~r = I and 
miscellaneous. All the values of the variable r arc nor alloucd. For some families r can be 
positive and negative. For fixed value o i  U or of x he farmlies uhich are subsels of msre 
geneill cases are also given. 

Y Condition 1 Condition 2 
i LL Variable Equalion 

Condirion 3 
Remark 

I 16 
16 

2 16 
16 

2 Q 8  
1 

2b 8 
1 

3 13 
1 

4 13 
0 

40 5 
0 

5 17 
1 

6 12 
0 

7 13 
0 

8 8  
0 

9 8  
0 

10 7 
0 

11 27 
0 

12 16 
0 

12n 16 
0 

13 16 
0 

14 12 
0 

15 12 
0 

u = 3  

u = 3  

u = 3  

U = 3  

n = 3  

u = 3  I 

u = 3  

u = 8  

u = 8  
2 r = x - l  

x = 4  

x = 4  

x = 4  

x = 4  

x = 9  

x = & + v + 2  
r = 2 u - u  
2x = 6" + u + 3  
2r = 2 u  - U + I 
" = 3u + 3 ~  
r = x - 3 u  

r= . r  

, = x  

, = x  

r = x  

I = x  

r = x  

r = x  

r = x  

, = U  

r = u  

r = u  

r = u  

? = U  

X = U  

,=U-" 
u = 4 u + 4  
r = x - Z u  

u = r - x + 2  
42 =x' +5x - I 4  
u = z - x + 2  
122 = x' +5x - 2 4 ~  
u = z - x - t 2  
4: = 3x' - -x  - IO 
" = z - 3x - 5 
4z = 3x' + 19x +20 
" = 2 r  --J + 3  
121 =x' + 5% -24 
U = 22 - 2r + 4 
4z = x' +3x - 10 
3u = 2 z  - 6x + 7  
20: = ¶xa + 27x - 70 
u = r - x + 4  
122 = x 2 +  I lx  - 60 
2" = 2r - 3x + 9  
6z = x 2 + 8 x - 3 3  

u = u + 2  

u = 3 u + 9  
4y = 3u2 + 13u + 14 
u = 3 u + 5  

" = 3 u + l  

v = u + 3  
6y = U' +7u 
y = v + l  
(2u - uj' = 5u + 4  
y = u + v  
(2u - U)' = i 6 u +  1 2 ~  + 5  
y = v t l  
(x - 3u)' = 13x - 9u 
y = 2u + U - I 
(U - U)' =9u + 9 u - 2  
y = u + v + Z  
(x - 2uj2 = 7 r  -4u 

4y = U' + 3u 

4y = 3 2  + 7u 

4y = 3u' + II 

y = x + Z  

y = * + 2  

y = 3 x - 1  

y = 3 x + 7  

y = x + 2  

y = 3 x + 3  

y = 3 x + 3  
(14) on 4 
y = x + 3  

y = 2 r + 4  

2 = zy + U 1-3 
Subset of case 3 
z = 2y - U - 7  
Subset of case 4 
z = 2y+Zu + 5  

z =2y  +5u + 4  
Subset of case I 
z = y + Z  

Subset of case 4 

Factorized wirh 1 

(13) on 2 

(14) on 2 

r = y - u + v  

r = y - u + u  
(13) on 12 
r = y - u + u  

z = y - u + u  

z = y - u + v  

other single zeros at N = 46033, 55 969 and 57 754. These families are in table 3 with 
numbers 29 and 30. Relations (13) and (14) generate new families from each of them. 

There are 15 zeros for N < 2400 with x = U, 2y = 3u and f = 22 + 1, but they are 
members of a finite family which also includes another zero for N = 4296. Many such 
finite families can be found. Without the finite families, the use of three conditions allowed 
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Table 2. Continued. 

16 10 Z r = 4 u + v + 5  y = - 8 u + w - 7  r = y - u + u  

160 10 S x = 2 8 u + v + 2 8  5 y = 3 2 u - u + 2 7  r = y - u + u  

17 8 x = 3 u + 3  4y = 5u + 4 r = y - s + u  

is a ~ = 3 ~ + 4  4y c 5 v +  10 r = y - u + v  

19 6 x = S u + 8  zy = au - ~ + 6  z = y - u + u  

190 6 Z r = u + 3  2y = 30a - 5 u  + 15 z = a u + 8  

19b 3 x = S u + 8  2y = 3211 - 7u + 21 : = y - s + v  

20 21 x = u + l  y = 3 u + 3  r = y - u + u - l  

21 20 x = u + 3  y = 3 u + 4  z = y - u + u + 1  

22 13 x = 6 u - 4 v + 8  y = u + u + 4  z = y - u + v - l  

22a 13 x = Z u + 2  y = 3" - U  +6 r = y - u + u + l  

23 13 Z r = v + 2  y = 5 v + 5  z = y + u - - u - I  

24 12 x = Z u + 3  y = 2 u + S  z = y - u + v - l  

25 12 x = 2 v  3y = 4u + 2 v i  I z = y + u - u + l  

26 12 2 r = v + 4  y = 5 v + 6  z = y + u - u + l  

27 IO x = 4 u  5y = 14u + LI +7 r = y + u - U - l  

28 8 x = v + l  y = 3 "  z = y + u - n + l  

29 8 x = 3 v - 4 u - l  y = 4 v - 5 u - 2  : = y + u - u - l  

30 6 x = 2 u + 2  y = 9u - U  + 6 r = y + u - u + l  

0 

0 

2r = U - 12u - 11 

5r = U - 12u - 12 

(12u - u12 = -264u + 24u - 119 

(12" - u ) ~  = -1% +29u - 54 (13) on 16 

o ~ ~ = 3 ~ - 4 . + 4  ( 4 u - 3 ~ ) 2 = ~ 6 ~ + 1 6  

0 

0 Z r = u - 4 u  (4u - U)' = -14u + 6u 

4r = 3" - 4 u +  4 (4u -3")' = 32u -8uC20  

0 2r = U-4u + 1 (4u - U)' =IOU + 9  (13) on 19 

0 2r = U -  4s - I  5(4u - U)' = -94u +%u-27 (13) on 19 

0 r = u - - u  (U - U)* = U +  u + 2  

0 , = u - - u  (U - " ) 2  = 5u - 3" 

2 I = " - "  

0 ? - = " - - U  2(u - u ) ~  =7u - 4" (13) on 22 

2(u - v)' = 2u + U + 6 

0 r = u - - u  (U -U)' = 3u + 4 

0 r = u - ! l  2(" - u y  = sa - 5" 

0 3 r = l J - u - 1  2(u - u ) ~  = 141 + 13" + 7 (13) on subset of cased 

0 r = v - - u  (U - ")I = 7u - 4" 

0 

0 S r = u - r - l  3(u -U)'= --U + 7 u + 2  

0 r = u - Z u  S ( 2 ~ - ~ ) ~ = - 2 4 ~ + 1 3 ~ - 6  

0 2 r = u - 4 r r  (4u - U? = -14u 1 6 "  

5r = U -6" + 2  (6u -U)' = 64u +31v 5 16, 

us to find 593 zeros, of which only 499 are new. With one, two and three relations, we 
found 2427 zeros, that is less than 15% of the total number of zeros for N < 2400. 

3.4. Remarkon zerosof(: z z ]  
There are 21 such zeros with z = 2, U = 1 ,  for N < 2400. They have been studied by 
Brudno (1987). He gave the solutions for c = b, in which case there is a Pel1 equation 

4(26 + I)' - 3(2a + 1)'+ 11 = 0 (55) 

already studied by Brudno and Louck (1987) and for c = 36+l, in which case the condition 
is the product of two Pel1 equations 

\(2a i. I)' - 12(2b + 1)' - 1][16(2b t 1)' - 3(2a t 1 ) ' t  111 = 0 
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Table 2. Continued. 

31 19 3 r = u + Z v  3r = 8u t v + 6 
0 3 r = v - u - 3  

32 IS x = 3 u  
0 2 r = u - 3 u - I  

321, I5 x = U  

I 2 r = v - 3 u - 1  
33 12 k = 6 u - 3 u t 6  

0 r = v - - U  
34 12 6 x = u t 2 v - I  

0 3 r = u - u + l  
35 I2 z r = 2 u + u - 3  

0 2 r = u - 2 u - 1  
351, 12 z r = 2 u + u - - 3  

0 r = u - 2 u  
36 10 x = u + l  

0 r = v - a u  
37 9 5 x = 8 u - u + 9  

0 5 r = 3 u - v - I  
37n 8 3 r = u t 4  

0 3r = " - 3u -z 
38 8 3x = 5u 1 3  

0 9 r = 3 v - 4 u - 6  
39 7 zr =3u  

0 3 r = u - u  
40 7 3 x = 3 u  + 2 u - ~ 3  

0 3 r = v - 3 u  
IOQ 4 X = 4  

r = u  
41 5 x = u  

41a 4 x = u + 2  

416 7 x = o + 2  

42 5 x = u  

420 4 x = U 

42b 6 x = u  

2r = " - U  - 3  

4r = y - " - 2  

4r = y - " - 2  

2r = " - U  - 1 

4r = U - U + 6 

47 = U - U + 6 

y = 3u 
(U - ")I = 9u t 9u 
Zy =3u + U - 5  
(3u - U)' = 48u t 24u - 23 
2y =3u t U - 5  
(3u - U)'= 48u t 24u - 23 
y = v t 2  
(U - U)' = 3u t 4 
y = 5 u  
(U - u ) ~  = 14u t 13" - 13 
y = u  
(2u - U)' = 24u+ 16" - 7 
y = 2 u  
(Zu - U)' = 24u t 16" - 7 
y = 6u - U +  2 
(2u - u)2 =3u  t U t 2 
y = 2u + U +  2 
(3" - ")2 = u t  8s t 9  
3y = 3 0 u - S u t  13 
(3u - U)' = 1% - 2" t 8  
y = z u + 2  
(4u - 3")' = 1% + 9u + 18 
6y = 7u + 2u + 6 
4(u - U)' = 21u + 24u t 18 
3y =3u t 2u + 3  
2(3u - u ) ~  = 54u t 27u + 4 5  
u = 3 u + 1  
2y = 3u2 t l l u  t 8 
22 = ( u t  u t  l ) ( U  - - U  -2) 
(U - "I2 = 2u +2v t 7  
6 2  = (y - Y - IO)(y t 3" t 4) 
(y - U)* = 16y 
24e = (y - I( -2)(7u -3y +48) 
(y -U)' = 16y 

(U - u ) ~  = 6u -2" + 3 
22 =(U t u  + l)(u -,U),, , , , ,  

82 = (U - u)(u + 3u + 2) 
(U - ")' = 12u t 4 u  + 12 
242 = (U - U t 8) (5u - U + 6) 
(U - u ) ~ =  12u+4u t 12 

(13) on (49) 
.? = 2" t U - I 
z = 2u t U - I 
(14) on 32 
L = I l u  -2" t 12 

32 = 14u t v t IO 
(13) for (50) 
2 = 3u +2" - I 

z = 3 u + 2 u - I  
(14) on 35 
z = 8 u + 3  

5z = 27v + 16" t 31 

L = 39u - 8" t I6 
(13) on 37 
32 = 16" - 3" + 6 

32 =4u + 8 u  t 3 

3r = 5u 

4 2 = ( y t 4 u t 5 ) ( 3 u t 4 )  

y = u + 2  
(14) on 10 

u = u t 2  
(13) on 40 
" = u t 2  
(14) on 40 
y = u + 2  

y = u t 2  
(13) on 41 
y = u + 2  
(14) on 41 

quoting only the solution of the first pari of the condition. In fact, b is half-integer in all 
the solutions with c = b and 

So, there is a solution with c = 36 + 1 corresponding to any solution with c = b. 

4. Zeros of degree 3 

There are 1939 zeros (261,557,1121) of degree 3. The maximum number of zeros for 
a given value of N is six and this happens for N = 1834. Searching for zeros with 
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Table 3. Largest linear families of zeros of degree 3. The number of members of the family 
for N < 2400 is Y. The first column gives the equation describing the family. 

u x  Y z I U " N 

6 4 4 7 3 r C 4  3 r + 6  5 r + 7  15r+22 
47 3r + 4  3 r + 6  5r + 10 15r+26 
35 , 2 r + 4  5 r + 6  8r + 10 2Or+26 
35 2 r + 3  5 r +  IO 8 r +  16 20r+37 
2 6 4 r + l  7 r + 2  10r+5 2 8 r f 9  
2 5 4 r + 4  7 r + 7  10r+6 28r+22 
17 3(4r- I )  l r  12r 42r - 5 
17 4(3r+ 1) 7 r +  1 2(6r + I )  42r+8 
16 5r 9r 217 -6 4 5 - 8  
1 6 5 r + l  9 r + l  21ri-7 45r+11 

66 9 Z r +  1 32r+8 3 5 ' 1 7  80r+ 17 
8 2r + 2  32r+26 35ri-20 80r+66 
6 2r+  1 39r +20 48r+20 104r 1-41 
6 Zr+2 39r+26 48rf30 104r+66 
5 dr 63r-9 6 6 - 9  1547 -20  
4 4 r + l  63r+11 6 6 r + I I  154r+23 

68 23 2 r + 4  6 r + 7  15r+20 30r+40 
23 2 r + 3  6r + 12 15r +26 30r+52 
9 8r 12r - 3  39r-7 78>- 14 
9 8 r + 4  12r+l 39r+8 78rf16  

10 I9 r + 2  1 2 r t 1 8  18r+26 36ri.52 
19 r + 2  l2r+29 18r+29 36r+58 
8 2 r +  1 30r + 12 45r + 17 90r +34 
7 2 r + 2  30r+20 45r+29 90ri-58 

3r + 3  49r+64 
3 r + 4  49r+77 

r 4 r + 4  65r+77 
r 4 r + 6  &+I12 
27 - I  5, 9 1 r f 2 1  
2r 5 r + 3  91r+64 
3, - 2 2(4r - 1) 137r - 24 
3 r - I  8r 1377 + 18 
3, - 2  l r  -2  145r-33 
3r- 1 7r 145, + 27 
4, 77-1 251r+45 
4 r + I  7 r + 5  251r+199 
3 r -  1 12r+4 327r-i 121 
3;+l 1 2 r + 5  327rf199 
9r - 2  12r - 4  483r - 71 
9, - 1 12r+ I 483r+64 
r 6r + 7~ 97r + 122 
r 6 r + 9 ~  '97r+160'  
37-2 16,-4 253r-53 
3, - 1 12r+2 253r+44 
2 1 + 2  3 r + 2  113r+155 
Z r + l  3 r + 4  113r+174 
3 r -  1 1Or+3 283r+99 
3r + I lor + 4 2837 + 174~ 

two identical parameters among ( x ,  y ,  e) and among ( t .  U ,  U) gives 18 triplets (the other 
parameters are the three integer solutions of an algebraic equation of degree 3). 66 pairs and 
10 sets of three zeros coupled two by two. There are also 11 pairs of zeros with the same 
values of ( x .  y. z )  and 14 pairs of zeros with the same values of ( t .  U, v). Five equations 
like (12)-(14) can be written; they are of second order. If they are used on the 1939 zeros 
found, 1693 of them generate no other zeros and the others generate 80 pairs, 24 triplets, 
five sets of four and two sets of five zeros, involving 16 new zeros with N > 2400. 

4.1. Zeros with x = u+2 and y = v i 2  

Among the 1939 zeros of degree 3, only 49 (13,17,19) have x = U + 2 and y = U + 2. 
These 6-j coefficients can be written with identical quantum numbers on the lower row: 

(58) 
x = a  
u = a - 2  

y = b  
U = b - 2 

z = -a - b + 2c + 3 
a c c  b l  . t = a + b + 2c f 1.  

They have been studied by Brudno (1987) who gave a Pel1 equation and two expressions 
of a finite family. The condition for a zero is 

4ab(a - l)(b - l)(a + b - l)(a + b - 2) 

x [(Za - 1)(2b - l)(Za + 2b - 3) - 3(4c + 1)(4c + 3)] = 0 (59) 

which can be written as the Pel1 equation 

[6(Zc + I)]* - 3(2a - l)[a + 26 - 212 = -3(a - 2)(2a2 - a  + 2) (60) 
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and another one obtained by the exchange of a and b. 
Since condition (59) is of the kind f l  fzf3 = glg2, where the 4 and the gj are linear 

in a, b and c, we can introduce two positive numbers k and 1 without a common divisor, 
such that kfi = l g j .  Elimination of c gives a quadratic equation for a and b which defines a 
finite family. So, because there are six choices for fi, g j ,  each zero belongs to six different 
finite families defined by two integers p and q without a common divisor. They are 

1(4c+ 2 &  1 )  = k(2u + 2b -3 )  

(21’~ - 3k’ - 1’)(21’b - 3k’ - 1’) = 3k(l i k)(3k2 7 3kl+ 21’) 
l ( 4 ~  + 2 & 1) = k(2a - 1) 
(3k2 + 1’ - Z26)(21’n + 21’b + 3k’ - 31’) = 3k(k i 1)(3k2 f 3kl+ 21’) 

(61) 

and the two others are obtained by the exchange of U and b in the last ones. Among the 
294 families defined for the 49 zeros (which are not all different), 146 reduce to only one 
element but one involves 192 elements. By these relations, the zeros are related from to 
between four and 207 other zeros: the mean number of related zeros is 43 for N < 2400. 
The first two of these relations were given by Brudno (1987) using s such that k(2s + 1 )  = 1 
in 

p q  = 3k(l f k)(3kz 7 3kl+ 212). (62) 
3k’ + 1’ 3k’ + 1’ 

21’ + q  a=- ilz + p  b=-. 
~ 

A polynomial family in the parameter k is obtained by replacing p and q by two polynomials 
p ( k ,  1) and q ( k ,  1) such that p(k ,  l )q (k ,  I )  is the right member of each second equation (61). 
Similar results also hold for the conditions (15), (20), (25), (31) and (38). 

It is quite easy to obtain the zeros of degree 3 with x = U + 2 and y = U + 2. There 
are 119 of them for 2400 < N < I2000 and 111 for 12000 < N < 24000. Their density 
decreases when N increases. 

4.2. Zeros with z - y = U - a 

There are 898 zeros (141,250,507) with z - y  = U - U  (or z--x = U - U  or y - x  = U - U )  

for N < 2400, that is 46.31% of their total number. Among them, there are 613 zeros with 
also z = 3u - 4u --2 or y = 3u - 4u - 2. For them, the condition is 

. 

( 2 ~  - 2~ + 1 ) ( 3 ~  - 3~ + 1 ) ( 3 ~  - 3~ + 2 )  f (x, U ,  u ) [ x ( ~ u  - U + 2 )  + (U  + Z)U] = 0 (63) 
where f ( x ,  U ,  U )  has 59 solutions for N < 2400. The 554 other zeros (78, 140,326) can 
be written as 

(64) 

for any positive value of p .  The values of r are such that v is an integer: r = np + p q  with 
np (0 < np < p )  such that 2(n, + l)(np + 2)  is a multiple of p .  The number of values of 
np is 2”’. where m is the number of prime factors of p larger than 2 multiplied by 4 if p 
is divisible by 4, multiplied by 2 if p is divisible by 2. 

The value of U increases quadratically with r. However, it is possible to extract families 
for which all the parameters increase linearly, using p = 2r + 4 or any parametrization of 
p and r such that U becomes linear. The 10 largest linear families are given in table 3. 
There is no general expression for these families and a zero can belong to more than one of 
them. With the restrictions y = 2u - 3u - 2 and z = 3u - 4u - 2, the search for zeros has 
been done for N Q 12000 and gave a total of 4318 zeros. Among them, 146 are solutions 
of f ( x .  U ,  U) = 0 and 4172 belong to the family (64). The figures for 2400 c N Q 6000 

L 
I = r + p + 2  U = r U = - ( r  + 1)(r + 2)  +2r +2  

P 
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are, respectively, 40 and 1230; for 6000 c N < 12000, they are 47 and 2388, showing 
respectively a decrease and an increase of the density when N increases. 

There are also 61 zeros with z - y = U - U and z =~3x + 2u + 3 u  + 7. For them, the 
condition is 

(3x + 3u + 3u + 7)(3x + 3u + 3 u  + 8)g(x, U, U) 

x [ 5 x ( x  - 1) - Z(U - x + 2)(u - x + 2)] = 0 

where g(x. U ,  U) has only one solution for N = 1848. The 60 other zeros (6,16,38) can 
be written as 

(66) 
5 

x = r U = r + p  - 2 U = -r(r - 1) + r  - 2 
2P 

for any positive value of p and r such that the parameters are integers and in the allowed 
range. The values of r are such that U is an integer: r = np + pq with np (0 < np c p) 
such that 5(np + l)(np + 2) is a multiple of 2p.  The number of values of np is 2'". where 
m is the number of prime factors of p larger than 2 and not 5 multiplied by 10 if p is 
divisible by 25, multiplied by 5 if p is divisible only by 5. 

As in the preceding case, the value of U increases quadratically with r. However, it 
, is possible to extract families for which all the parameters increase linearly. Six linear 
families are given in table 3. There is no general expression for these families and a zero 
can belong to more than one of them. Computing all the zeros with y = 3x+3u+2u+7 and 
z = 3x + 2u + 3u + 7 for~N < 24000, there are only two other solutions of g ( x ,  U ,  U) = 0 
for N =4370 and N = 8712 and 1148 other zeros for (66). 455 below N = 12000 and 
693 above. .~ 

4.3. Zeros with t =2z 

There are 314 zeros (35.96,183) with t = 2z for which z ( z  - 1 )  factorizes in the condition. 
.Among them, 118 zeros (14,32,71) also have z = 3(u - U )  - 1. For them the condition is 

Z(Z - l)g(x, U. u ) [ ~ u ( x  - U - 2) - X ( X  + 4~ + 3)1 = 0 (67) 
where the complicated expression g ( x ,  U, U )  has only one solution for N = 1300. The 117 
other zeros can be written as 

(68) 

for any positive value of p and r such that the parameters are integers and in the allowed 
range. The values of r are the same as for (66). Four linear families are given in table.3. 
The zeros with t = 2z and z = 3(u - U )  - 1 are quite easy to obtain; 780 zeros are found 
for 2400 < N < 12000 and 1184 for 12000 c N < 24000; all of them aregiven by (68). 

Among the zeros with t = 22, 107 (8,33,66) also have 3y = 22 + 2 and (y - 1) also 
factorizes in the condition which is 

J 
x = r U = r - p  - 2  U = -r(r - 1) -2 r  

2P 

( ~ - l ) z ( r - l ) h ( ~ , u u , U ) [ x ( 3 u - x + 4 ) - ( 2 x + u + 2 ) ( u - x + 2 ) ] = 0 .  (69) 
There are 18 zero solutions of h ( x ,  U ,  U) for N 4 2400 and 89 (8.25,71) for the second 
expression. These 89 zeros can be written as 

(70) 

range. The values of r are similar to those of (64). Four linear families are given in table 3. 

2 

P 
x = r U = r + p - 2  U = -r(r - 1) + r  - 2  

for any positive value of p and r such that the parameters are integers and in the allowed 
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As for (64), (66) and (68), there is no general expression of these families and a zero can 
belong to more than one of them. For N < 24000, there are 1760 zeros with f = 22, 
3y = 22 +2, of which 1712 belong to (70) and 48 are solutions of h ( x ,  U ,  U). in (69). These 
figures are 643 and 16 for 2400 < N < 12000,981 and 13 beyond 12000. 

4.4. Zeros with three relations beiween quantum numbers 

Among the 59 zeros of f ( x .  U ,  U) in (63), 12 have also x = U + 2  and 10 have U = 4u +7. 
They are members of two quadratic families with three relations between quantum numbers. 

,For them, f ( x ,  U. U )  in  (63) can be written, respectively, as 

f ( x ,  U, U) = (U + I ) ( u  + 2)[(3u - U + 3)’+ 5~ - 5u + I ]  = 0 
f ( x , u . 4 u + 7 ) = ( ~ + 2 ) ( 4 ~ + 9 ) [ ( x - 2 ~ ) ~ + 4 u -  17x1 = O  (71) 

and the solutions are 
x = u + 2  y = 2 u - 3 u - 2  z = 3 u - 4 u - 2  

u=+, ( r -2 ) ( r+7)  u==(r+3) (3r -4 )  

y = s u + 1 2  z = 8 u + 1 9  u=4u+7  

I (72) 

with r = H q  f 2 and 

(73) 

with r = k20q h3. If the relations x = v +2  and U = 4u +7 are replaced by the conditions 
(71), there are seven and one more zeros. 

There are 19 zeros with z - y  = y - x  = u - U  for N &2400. With x = u + 2 ,  six of. 
them are members of a finite family relevant to the Pel1 equation. Among the others, six 
with t = 42 - 2 and five with f = 4x - 2 are members o f  a family for positive and negative 
values of the same parameter for which the condition is 

x = &j(r -t 13)(r + 17) U = &,(r - 17)(r + 17) 

(2 - l)(Y + U ) ( Y  + U + I ) ( Y  + V)(Y  + U + 1) 
x [2(y + u)(u - U) + e  - U  - 2][2(u - U)’ - U -21 = 0 (74) 

and the solutions are 
x = 6~ - 4~ +4t 
u = 2 ( r  - 1 )  u = 2 r 2 + r - 2  

y = SU - 3~ 1-4 z = 4~ - 2~ + 4  
2 (75) 

with r = 1 to r = 6 and r = -2 to r = -6 for N < 2400. 
A fourth infinite family can be found with x = 4u + 5, 16y = 1Ou + 9v + 25 and 

42 = 14u + 5u + 21 with the condition 3u = (2u + 3)(4u - 1 ) ;  it involves only five zeros 
for N & 2400. 

There are eight zeros with x = 5 among the 18 solutions of h(x ,  U, U) in (69) and five 
zeros with x = 5 among the 59 solutions of f ( x ,  U ,  U )  in (63) have x = 5. In these cases 

h(5, U, U) = [(U + I ) ( u  + 1 )  - 5] [ (~  - lO)(u - 10) - 1801 = 0 
J ( 5 , ~ , ~ ) = [ ( ~ + 1 ) ( ~ + 6 ) + 5 ] [ ( ~ - 1 0 ) ( ~ + 1 7 ) + 1 8 0 ] = 0 .  (76) 

There are nine and six solutions, respectively, for these conditions ‘and the zeros above 
N = 2400 occur for N = 3952 and N = 2948. Finally, for t = 22 + 2, there are 
four zeros with x = 5, y = 2u + ~ 2 ~  + 12 and z = 3u + 3u + 17 with the condition 
(U - 3)(u - 3) = 30 and four zeros with 3x =‘4u + 12, z = 3u + 7 for which the condition 
(U + 6)(3u + 48 - 14u) =~270 gives two other solutions for N = 3274 and N = 7290. 
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Taking into account the Pel1 equation, the four families with two relations between 
quantum numbers and the seven families with three relations, we obtain 917 zeros, 47.29% 
for N Q 2400; 130, 49.81% for N < 600; 248, 44.52% for 600 < N < 12W; and 539, 
48.08% for 1200 e N Q 2400. 

5. Zeros of degree larger than 3 

There are 217 zeros of degree 4 (53,78,86) for N 6 2400. The maximum number of zeros 
for a given value of N is only two and happens IO times. Of course, the first nine of the 
10 zeros given by Brudno (1987) are in the list, but not the last one, which is of degree 3. 
Among the 18 zeros with x = 7 are three families of respectively five, three and four zeros 
with two other relations between the coefficients. These relations and the conditions for a 
zero are 
y = 2 u  + 2 u  +23  
2y = 3(u + U + 15) 

z = 3 u + 3 u + 3 3  
z = 5(u + U + 13) 

(U - 7)(u - 7) = 140 
(U - 7 ) ( u  - 7) = 168 (77) 

y = -3u + 2 u  - 3 
The two first families involve another zero for N = 3138 and N = 4588, respctively. 
These families account for 5.53% of the zeros found for N < 2400. We cannot say if the 
number of zeros is finite or not. 

There are 58 zeros of degree 5 (20,29,9) for N < 2400. The condition for a zero is 
of degree 15. If x - U and y - U are from 2 to 6, this degree goes down: to degree 8 if 
these two differences are the same or one of them is 4; to degree 6 if both of them are 4. 
There are 12 zeros with U = x - 6 and U = y - 6, for which the condition factorizes into 

4(x - Z ) ( x  - 3)fy - Z)(y - 3 ) ( x  + y - 4)(x + Y - 5)(x + Y - 6)fi(x, Y. Z) = 0. (78) 
Among them are eight zeros with f = 2z (z = 2x + 2y - 8) and three zeros with 
5z = 2x + 2y + 6 for which the condition becomes. respectively, 

(79) 

The last factor of the first equation has a ninth solution for N = 2704. No solutions of 
gl ( x .  y)  or g&, y) have be found for N 6 lo6. There are only two other zeros with 
U = x - 6, U = y - 6 at N = 631 and N = 5898 for N Q 9000. There are also 12 zeros 
with U = x - 6 and U = y - 4, for which the condition factorizes into 

z = -4u +3u - 3 (U -7)(u+ 17) = -140. 

fi ( x ,  y, 2r + 2y - 8) = (2x + 2y - 9)gl(x, Y)[(x - 16)(y - 16) - 1801 0 

f i (x ,y .  ; [ ~ + ~ + 3 ] ) = ( 2 x + 2 y - 9 ) g z ( x , y ) [ ( 5 ~ - 3 2 3 ( 5 ~ - 3 2 ) - 5 0 4 ]  Y O .  (80) ~ 

8(X-2)(2 -3)Y(Y- l)(Y--)(X+Y - 3 ) ( x f y - 4 ) f z ( x , Y . Z ) = 0 .  (81) 
For six of them (including the first zero of the previous family), z = 2y - x + 2 and for 
five of them z = 3x + 2y - 14. For these 

f ? ( x ,  y. 2y - x + 2) ( 2 ~  - 3)83(x, Y)[(x -k Y + 10)(16 - X )  - 1801 = 0 (82) 
fz(x. y .  Z)  = ( X  + y - 5 ) ( ~  + y - 6)g4(~ ,  Y)[(x - 16)(2y - 33) - 3601 = 0 .  (83) 
The last factor of the second equation also has a sixth solution for N = 6162. No solution 
of g3(x ,  y) = 0 has been found for y Q lo6, and g4(x. y) = 0 has only one solution for 
x = 75 and N = 2984 for x < lo6. There is only one other zero with U = x - 6, U = y - 4 
at N = 334 for N < 7500. The condition for a zero is quite simple with U = x - 4 and 
U = y -4, but gives only one zero at N = 3054 for N 4 24000. All the zeros obtained for 
degree 5 are given in table 4. With 21 zeros (36.21% of the total number) given by four 
finite families, it seems that the total number of zeros is finite for this degree. 
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Table 4. Zeros of 6-j coeffcienU of degree n = 5 .  The values of 0.  b. c, d .  E and f m chosen 
to exhibit the maximum number of almost identical values in the lower row and correspond to 
some permutation Of lhe Y .  Five zeros found beyond N = 2400 are added to the table. In 
the first column, 1, 2, 3 and 4 indicate zeros given by the relations (79), (80). (82) and (83), 
respeclively; 5stands for2and3. Thistableiscomplete for N = P(a+b+c+d+r+f) < 2400. 

5 143 9 9 8 f f 3 15 11 9 $ . ?  B 

I? -1 26 21 IS 9 $ $ 

2 184 35 34 3 9 5 -2 20 16 18 7 16 16 
3 212 40 36 30 10 6 0 25 21 15 15 15 15 

215 9 y q p 
I7  57 244 45 41 36 19 15 -12 7 13 

249 f 9 3 3 29 24 21 
3 320 61 56 43 21 10 -3 29 23 12 32 33 32 

334 66 53 48 12 8 5 9 18 61 30 
341 Ip! 4 9 -+ ? 2 4 1 7 7 $ - q  
348 67 60 47 26 23 -19 24 17 12 43 43 35 

2 348 69 69 36 24 1 1  -9 40 39 6 29 30 30 
461 9 y y y $ -$ q y 6  3 5 3 4 y  
480 93 85 62 25 20 - 1  59 42 41 34 42 21 
502 96 85 70 34 19 -4 46 33 18 SO 52 52 

3 506 97 91 65 41 17 -9 44 37 12 53 54 54 

512 100 91 65 42 IS -11 71 53 27 29 38 38 
566 106 92 85 54 7 0 80 46 46 26 46 39 

592 107 98 91 49 41 -18 74 40 70 33 58 21 
605 f p 70 61 55 9 3 3 621 $ 
630 111 107 97 71 59 -47 32 89 78 79 18 19 
630 I l l  108 96 72 59 -48 85 30 84 26 78 12 

6 3 1 F I f l Y q  p i 6 8  54 19 y y y  
645 
663 
669 $ f 7 $ -9 51 67 92 f g 
698 132 128 89 72 32 -29 48 7 y 80 y 

1 702 132 111 108 54 51 -28 52 30 27 80 81 81 

I 728 137 119 108 60 49 -29 54 35 24 83 84 84 
4 816 153 136 119 73 58 -39 112 39 23 96 91 96 
I 8 1 9 Y  f 9 - 9 6 ]  45 21 f f 

S O 9 9  9 9 7-944 p p p 54 54 

577 f La ' p q  70 61 41 9 f p 

f y 7 6  60 50 f 

y 35 4 53 111 
f - 

251 4 39 7 f 

[ 7 1 5 y  4 y p - p 5 3  33 25 .!$? 165 2 1  

835 11? 2 -? 56 47 14 
4 877 y 289 f Ly y - 9  58 39 24 y 211 U 

2 2 2  
I 884 167 153 122 82 51  -35 66 51 20 101 102 102 
3 887 3 3 -2 74 66 13 9 x 7T 
1 988 187 174 133 95 54 -39 74 60 19 113 114 114 

I010 182 169 154 112 100 -81 21 y 133 
1025 251 7 p 5 134 h 69 70 
1030 189 171 155 111 93 -77 56 39 22 133 132 133 
1083 9 -% 76 138 125 8: 

901 Y Y T f x -7 y 98 f 33 7 
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N x. xb x, r. rb r, 0 b c d e J 

111; -62 91 78 18 - 
1122 220 215 126 100~ 50 -39 160 88 88 60 127 38 

I 1170 222 210 153 117 60 -46 88 135 135 134 75 18 
1199 9 160 83 82 
1260 237 210 183 59 55 32 146 89 62 91 121 121 
1424 286 274 152 84 50 -4 185 139 51 101 135 101 

4 1094 204 188 155 113 78 -62 71 55 21 133 133 138 

2 YS Y ? 

117 105 17 1 1547 y y y +3 +7 -+ 
4 I580 295 281 214 176 107 -93 101 87 19 194 I94 195 

1594 299 289 209 179 101 -91 104 94 15 195 195 194 
1821 7 4 191 178 178 

3 2048 394 386 244 2i6 76 -66 164 155 14 230~ 231 230 
1905 111 -9 -y y ,  ,219 ?# 116 116 

2 

4 2335 y y U y y +l 148 135 18 y y y 
2 

I 2704 517 507 328 296 ~ 117 -105 206 195 16 311 312 312 
2984 566 498 428 280 212 -142 212 143 74 354 355 354 
3054 636 634 257 243 136 -134 386 384 7 250 250 250 
5898 1142 1110 697 621 208 -174 484 451 38 658 659 659 
6162 1154 1142 785 751 392 -380 387 375 17 767 767 768 

Only 14 zeros of degree larger than 5 were found in the search for N < 1200. After 
continuation of the search for the degrees n < 8 and N < 2400 

e for n = 6, there are six zeros for N < 1200 and only one more at N = 1581; 
o for n = 7, there are four zeros for N < 1200 but two more at N = 1364 and N = 1701; 

for n = 8, there are three zeros for N < 1200 and no more up to N = 2400; 
e for n = 9, there is only one zero for N = 411 (we did not search beyond N = 1200); 
e for n > 9, no zeros have been found for N < 1200. 

All the zeros of degree larger than 5 are given in table 5, 

6. Conclusions 

The behaviour of the zeros of 6- j  coefficients is similar to that found by Raynal et al (1992) 
for the 3 - j  coefficients of which the order is larger than the degree. 

Here, there is nothing like the order introduced for the 3 - j  coefficients. The zeros of 
6- j  coefficients appear as a single population, whereas the zeros of 3 - j  coefficients were 
the mixture of two populations, these three populations showing similar properties of fast 
decrease of their number with increasing degree or order. 

The number of zeros of degrees 1, 2 and 3 is infinite: this is proven via the use of 
the Pell equation in the last two cases. A Pel1 equation for the 6- j  coefficient of degree 
3 can only be used for 6- j  which can be written with identical quantum numbers in the 
lower row; for degree 2, Pell equations deal primarily with similar coefficients. Four cases 
obtained by Beyer ar al (1986) with two linear relations between quantum numbers can be 
generalized to deal with a single relation and we obtained another case of factorization, with 
two quadratic relations between quantum numbers, which do not give a Pell equation but 
give very simple polynomial solutions. Quite surprisingly, the 6- j  coefficients of degree 3 
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Table5 Zeros of6-j  cwflicientsofdegree6 < n  < 8 for N = 2 ( o + b + c + d t r + n  < 2400 
and of degree n > 8 for N < IZW. The values of a, b. E .  d .  e and J are chosen to exhibit 
lhe m i m u m  numbcr of dmost identicel values in the lower row and correspond to some 
permutation of the Y. 

N n X . X b X , Y .  Yb Y, a b c d c J 

338 6 67 53 49- 12 7 4 9 21 9 28 
378 6 69 63 57- 18 I2 9 a 33 % 24 

688 6 124 119 101 79 59 54 35 30 I 1  89 89 90 
636 6 125 123 70 5.5 3 2 4 60 fi 2 63 Y 

y y y ~ p  y $7 + 9 +  6 2 5 3  53 +s 
1033 6 281 211 9 141 94 84 1111 I47 147 

1581 6 $ 101 88 19 # 
2 2  

382 7 72 63 56 16 11 6 44 37 31 28 26 25 
590 7 106 98 9 1 ~  48 40 19 77 69 36 29 29 55 
6 1 7 7 y E i s ? 6 1  22 19 74 55 s o y  y $ 

1364 7 265 215 202 75 ~ 3 7  26 151 70 88 114 145 114 
1701 7 2$i If $ 164 13.5 36 9 
384 8 71 64 5 7 ~  16 12 6 y 38 63 2 2  s 26 9 
512 8 97 92 67 41 15 10 7 $ 13 y 54 

1116 8 216 214 128 8'7 22 1 119 9 97 y y 
41,  y y y y p 4 48 44 2 9 %  9 y 

2 2 2 2  
7 O l 7 y y 9 9 g  2 $ 5 1  48 1 O y y y  

2 

are easier to handle: there are four other cases in which two simple linear relations between 
quantum numbers give a factorization of the condition. They do not give Pell equations but 
give results similar to those obtained for degree 2 with simpler expressions: linear instead 
of quadratic, quadratic instead of cubic. These cases of factorization account for almost 
half of the zeros. This situation can be compared to the one of the zeros of 3-j coefficients 
in which four fifths of the zeros are accounted for by degree 3. 

For the zeros of degrees 4 and 5, we obtained cases of factorization with three simple 
relations between quantum numbers giving finite families. They are special cases of Pell 
equations x z  - N y Z  = D in which N is a square. It is an indication, but not a proof, that the 
total number of zeros is finite. The scarcity of the zeros found for higher degrees forbids 
any further study., 
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